Peer Reviewed Journal Articles (Before UM)


  1. Partitioning of polymers into pores with surface interactions at dilute solution limit, Y. Wang, D. Howard, Y. Gong. Polymer 45, 313-320 (2004)
  2. Global ribosome motions revealed with elastic network model. Y. Wang, A. J. Rader, I. Bahar, R. L. Jernigan J. Struct. Biol. 147, 302-314 (2004).
  3. Computer simulation studies on overlapping polymer chains confined in narrow channels. I. Teraoka, Y. Wang. Polymer 45, 3835-3843 (2004).
  4. Confinement free energy and chain conformations of homopolymers confined between two repulsive walls. Y. Wang, J. Chem. Phys. 121, 3898-3904 (2004).
  5. Thermodynamics and partitioning of homopolymers into a slit-a grand canonical Monte Carlo simulation study. W. Jiang, Y. Wang, J. Chem. Phys.121, 3905-3913 (2004).
  6. A Computational investigation of the critical condition used in the liquid chromatography of polymers, S. Orelli, W. Jiang, Y. Wang. Macromolecules 37, 10073-10078 (2004).
  7. Comparison of partitioning of a bimodal polymer mixture into micropores in good and theta solvents: A Monte Carlo study. P. Cifra, Y. Wang, I. Teraoka, Macromolecules 35, 1446-1450 (2002).
  8. Partitioning of bimodal polymer mixtures into a slit: effect of slit width, composition and pore-to-bulk volume ratio. Y. Wang, Q. Lin, P. Cifra, I. Teraoka, Colloids and Surfaces A: physiochemical and Engineering Aspect, 206, 305-312 (2002).
  9. Polymer chains in good solvent facing impenetrable walls: what is the distance to the wall in lattice Monte Carlo simulations, I. Teraoka, P. Cifra, Y. Wang, Colloids and Surfaces A: physiochemical and Engineering Aspect, 206, 299-303 (2002).
  10. Partitioning of polymers into pores near the critical adsorption point, Y. Gong, Y. Wang, Macromolecules 35, 7492-7498 (2002).
  11. Simulation of the random scission of C-C bonds in the initial stage of the thermal degradation of polyethylene. P. Doruker; Y. Wang; W. L. Mattice. Comput. Theor. Polym. Sci. 11, 155-166, (2001).
  12. Lattice Monte Carlo simulation for the partitioning of a bimodal polymer mixture into a slit. Y. Wang, I. Teraoka, P. Cifra. Macromolecules 34, 127-133 (2001).
  13. Effective-medium Gaussian-chain theory for semidilute polymer solutions confined to a slit. I. Teraoka, Y. Wang. J. Chem. Phys. 115, 1105-1114 (2001).
  14. What is the distance to wall in the lattice simulations? I. Teraoka; P. Cfira; Y. Wang, Macromolecules 34, 7121-7126 (2001).
  15. Structures and thermodynamics of nondilute polymer solutions confined between two parallel plates. Y. Wang, I. Teraoka. Macromolecules 33, 3478-3484 (2000).
  16. Crossover from two- to three-dimensional contraction of polymer chains in semidilute solutions confined to a narrow slit. I. Teraoka; Y. Wang; Macromolecules 33, 6901-6903 (2000)
  17. Weak-to-strong penetration transition of macromolecules into a slit in theta solvent, P. Cifra, T. Bleha, Y. Wang, I. Teraka, J. Chem. Phys. 113, 8313-8318 (2000).
  18. Exchange kinetics under spherical geometry. Y. Wang; R. G. Diermeier; R. Rajagopalan. Langmuir 13, 2348 (1997).
  19. Monte Carlo simulations for micellar encapsulation. S. Talsania; Y. Wang; R. Rajagopalan; K. Mohanty. J. Colloid Interface Sci. 190, 92-103 (1997).
  20. Simulation of self-assembly in solution by triblock copolymers with sticky blocks at their ends. M. Nguyen-Misra; S. Misra; Y. Wang; K. Rodrigues; W. L. Mattice. Prog. Colloid Polym. Sci..103, 138-145 (1997).
  21. Computer Simulation of Semidilute Polymer Solutions in Confined Geometry: Pore as a Microscopic Probe. Y. Wang; I. Teraoka. Macromolecules 30, 8473-8477 (1997).
  22. Dynamic properties of homopolymer layers adsorbed on a solid surface. Y. Wang; R. Rajagopalan. J. Chem. Phys. 105, 696-705 (1996)
  23. Exchange of chains between micelles of labeled Polystyrene-block-Polyoxyethylene, as monitored by nonradiative singlet energy transfer. Y. Wang; C. M. Kausch; M. Chun; R. P. Quirk; W. L. Mattice. Macromolecules 28, 904-911 (1995).
  24. Kinetics of detachment of homopolymers from a solid surface. Y. Wang; R. Rajagopalan; W. L. Mattice. Phys. Rev. Lett. 74, 2503-2506 (1995).
  25. The exchange kinetics of macromolecules adsorbed on a solid surface: A theoretical investigation. Y. Wang; R. Rajagopalan; W. L. Mattice. Macromolecules 28, 7058-7063 (1995).
  26. Adsorption of homopolymers on a solid surface: A comparison between Monte Carlo simulation and the Scheutjens-Fleer mean-field lattice theory. Y. Wang; W. L. Mattice. Langmuir 10, 2281-2288 (1994).
  27. Influence of chain stiffness on the micellization of block copolymer in a selective solvent as observed in Monte Carlo simulations. P. Adriani; Y. Wang; W. L. Mattice. J. Chem. Phys. 100, 7718-7721 (1994).
  28. Pairwise interactions in the critical micelle concentrations of diblock copolymers. Y. Wang; W. L. Mattice; D. H. Napper. Colloid-Polymer Interactions, edited by P. Dubin and P. Tong. ACS Symposium Series 532, Chapter 5 (1993).
  29. Simulation of the adsorption of symmetric diblock copolymers at the interface of the two monomeric homopolymers. Y. Wang; W. L. Mattice. J. Chem. Phys. 98, 9881-9887 (1993).
  30. A Monte Carlo study of the microphase separation transition in a diblock copolymer melt. R. Balaji; Y. Wang; M. D. Foster; W. L. Mattice. Comput. Polym. Sci. 3, 15-22 (1993).
  31. Simulation of the adsorption of unsymmetric diblock copolymers at the interface between the two monomeric homopolymers. Y. Wang; Y. Li; W. L. Mattice. J. Chem. Phys. 98, 4068-4075 (1993).
  32. Simulation of the formation of micelles by diblock copolymers under weak segregation. Y. Wang; W. L. Mattice; D. H. Napper. Langmuir 9, 66-70 (1993).
  33. Simulation of the self-assembly of symmetric triblock copolymers in dilute solution. Y. Wang; W. L. Mattice; D. H. Napper. Macromolecules 25, 4073-4077 (1992).