Peer Reviewed Journal Articles (Before UM)

  1. Interplay of Coil-Globule Transition and Surface Adsorption of a Lattice HP Protein Model, Meng-bo Luo, Jesse D. Ziebarth, Yongmei Wang, J. Phys. Chem. B. , 118, 14913-14921 (2014) (doi:10.1021/jp506126d)
  2. Impact of Core Dielectric Properties on the Localized Surface Plasmonic Spectra of Gold-Coated Magnetic Core-Shell Nanoparticles. Chaffin EA, Bhana S, O'Connor RT, Huang X, Wang Y. J Phys Chem B. 118, 14076-14084 (2014). doi:10.1021/jp505202k.
  3. Comparison of monovalent and divalent ion distributions around a DNA duplex with molecular dynamics simulation and a Poisson-Botlzmann approach, Timothy J. Robbins, Jesse D. Ziebarth, Yongmei Wang, Biopolymer, 101, 834-848 (2014) (doi:10.1002/bip.22461)
  4. Capture and detection of cancer cells in whole blood with magnetic–optical nanoovals, Saheel Bhana, Elise A. Chaffin, Yongmei Wang, Sanjay R. Mishra, and Xiaohua Huang, Nanomedicine, 9, 593-606 (2014) (doi:10.2217/nnm.13.77)
  5. HPLC characterization of hydrogenous polystyrene-b-deuterated polystyrene using isotope effect, Sanghoon Lee, Hyojoon Lee, Lam Thieu, Youncheol Jeong, Taihyun Chang, Chao Fu, Yutian Zhu, Yongmei Wang, Macromolecules, 46, 9114-9121 (2013) (doi:10.1021/ma4018247)
  6. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly, Brittany Burton Lott, Yongmei Wang, Takuya Nakazato, BMC Biophysics 6:13 (2013) (doi: 10.1186/2046-1682-6-13)
  7. Can the Individual Block in Block Copolymer be Made Chromatographically "Invisible" at the Critical Condition of Its Corresponding Homopolymer? Xiaoping Yang, Yutian Zhu, Yongmei Wang, Polymer, 45, 3730-3736 (2013)
  8. Vibrational spectra, DFT calculations, and conformations of 5'-Chloro-1-isopropyl-7-azaindirubin-3'-oxime, Timothy Robbins, Yongmei Wang, Q.-Z. Yao, Z.-H. Wang, J. Cheng, and Y.-S. Li, Journal of Molecular Structure 1048, 51 (2013) (doi:10.1016/j.molstruc.2013.05.012).
  9. Quantitative analysis of oleic acid and three types of polyethers according to the number of hydroxy end groups in Polysorbate 80 by hydrophilic interaction chromatography at critical conditions. Zhang, Rui, Wang, Yu, Ji, Yu, Shi, Bei.-Jia, Zhang, Zai-Ping, Zhang, Hai-Yan, Yang, Ming, Wang, Yongmei, Journal of chromatography. A, 1272, 73–80 (2013). doi:10.1016/j.chroma.2012.11.070
  10. A structural-based strategy for recognition of transcription factor binding sites. Xu, Beisi, Schones, Dustin. E., Wang, Yongmei, Liang, Haojun. & Li, Guohui. PloS one 8, e52460 (2013).
  11. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations, Timothy J. Robbins, Yongmei Wang, J. Biomolecular Structure and Dynamics, 31, 1311-1323 (2013) (appeared online Nov 16th, 2012, DOI: 10.1080/07391102.2012.732344).
  12. Molecular dynamics and neutron scattering study of the dependence of polyelectrolyte dendrimer conformation on counterion behavior, Bin Wu, Wei-Ren Chen, Takeshi Egami, Xin Li, Yun Liu, Yongmei Wang, Changwoo Do, Linoel Porcar, Kunlun Hong, Li Liu, Gregory S. Smith and Sean C. Smith, J. Chem. Phys., 137, 064902, (2012) (DOI: 10.1063/1.472190).
  13. Synthesis and Properties of Near Infrared-absorbing Magnetic-optical Nanopins, Saheel Bhana, Binod K. Rai, Sanjay Mishra, Yongmei Wang, Xiaohua Huang. Nanoscale, 4, 4939-4942, (2012) (doi: 10.1039/C2NR31291C).
  14. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function, Sanjoy K. Khan, Haiyan Xu, Mak Uka-Tadenuma, Brittany Burton, Yongmei Wang, Hiroki R. Ueda, Andrew C. Liu, J. Mol. Biol. 287, 25917-25926 (2012) (DOI: 10.1074/jbc.M112.368001).
  15. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation, Bin Wu, B. Kerkeni, T. Egami, C. Do, Y. Liu, Yongmei Wang, L. Porcar, K. Hong, S. C. Smith, E. L. Liu, G. S. Smith, Wei-Ren Chen, J. Chem. Phys. 136, 144901 (2012). (DOI: 10.1063/1.3697479)
  16. A Computational Investigation on the Connection between Dynamics Properties of Ribosomal Proteins and Ribosome Assembly, Brittany Burton, Michael Zimmerman, Robert Jernigan, Yongmei Wang, PLos Comput. Biol. 8 (5): e1002530 (2012) (DOI: 10.1371/journal.pcbi.1002530)
  17. Multicompartment micellar aggregates of amphiphilic ABC triblock copolymer in selective solvents for C block: A Monte Carlo simulation, Yutian Zhu, Haizhou Yu, Yongmei Wang, Jie Cui, Weixin Kong, Wei Jiang, Soft Matter 8, 4695-4707 (2012). (DOI: 10.1039/c2sm07324b)
  18. Characterization of ethylene-propylene copolymers with high-temperature gradient adsorption liquid chromatography and CRYSTAF, Tibor Macko, Robert Brull, Yongmei Wang, Baudilio Coto, Inmaculada Suarez, Journal of Applied Polymer Science, 122, 3211-3217 (2011).
  19. Dependence of critical condition in liquid chromatography on the pore size of column substrates, Yutian Zhu, Jesse Ziebarth, Yongmei Wang, Polymer 52, 3219-3225 (2011)
  20. A review on the development of liquid chromatography systems for polyolefins, Tibor Macko, Robert Brull, Yutian Zhu, Yongmei Wang, J. Sep. Sci. 33, 3446-3454 (2010). (invited review)
  21. Partitioning of star branched polymers into pores at three chromatography conditions. Yongmei Wang, Aaron Masur, Yutian Zhu, Jesse Ziebarth, J. Chromatography A 1217, 6102-6109 (2010)
  22. Transport of Star-Branched Polymers in Nanoscale Pipe Channels Simulated with Dissipative Particle Dynamics Simulation. Ziqi Li, Yajie Li, Yongmei Wang, ZhaoYan Sun, Lijia An, Macromolecules 43 (13), 5896-5903 (2010)
  23. Coarse-grained molecular dynamics simulations of DNA condensation by block copolymers and formation of core-corona structures. Jesse Ziebarth, Yongmei Wang, J. Phys. Chem. B, 114, 6225-6232 (2010)
  24. How well can one separate copolymers according to both chemical composition and sequence distributions? Yutian Zhu, Tibor Macok, Jesse Ziebarth, Yongmei Wang, Macromolecules 43, 5888-5895 (2010) (DOI:10.1021/ma1007336)
  25. Effect of competition on selective adsorption of heteropolymers onto heterogeneous surfaces, Bhumin Patel, Jesse Ziebarth, Yongmei Wang, Macromolecules 43, 2069-2075 (2010)
  26. Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations, Jesse D. Ziebarth, Yongmei Wang, Biomacromolecules 11, 29-38 (2010)
  27. Molecular dynamics simulation of complexation between DNA-polycations, Jesse Ziebarth, Yongmei Wang, Biophys. J, 97, 1971-1983 (2009)
  28. Liquid chromatographic separation of olefin oligomers and its relation to separation of polyolefins-an overview, Tibor Macko, Harald Pasch, Yongmei Wang, Macromolecular Symposia, 282, 93-100 (2009)
  29. Retention behavior of star-shaped polystyrene near the chromatographic critical condition, K. Im; H.-W. Park; Y. Kim; S. Ahn; T. Chang; K. Lee; H.-J. Lee; J. Ziebarth, Y. Wang. Macromolecules 41 (9), 3375-3383 (2008)
  30. Dissipative particle dynamics simulation on a ternary system with nanoparticles, double-hydrophilic block copolymers and solvent, Jianhua Huang, Mengbo Luo, Yongmei Wang, J. Phys. Chem. B 112 (22), 6735-6741 (2008)
  31. Selective adsorption of heteropolymer onto heterogeneous surfaces-interplay between sequences and surface patterns, J. D. Ziebarth, J. Williams, Yongmei Wang, Macromolecules 41 (13), 4929-4936 (2008)
  32. Dissipative particle dynamics simulation of on-chip hydrodynamic chromatography, Yongmei Wang, Wenhua Jiang, Sarah Miller, Eugene Eckstein, J. Chromatography A 1198, 140-147 (2008)
  33. Effects of protein subunits removal on the computed motions of partial 30S structures of the ribosome. Aimin Yan, Yongmei Wang, Andrezj Kloczkowski, Robert Jernigan, J. Chem. Theory & Computation 4, 1757-1767 (2008)
  34. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics, Wenhua Jiang, Jianhua Huang, Yongmei Wang, and Mohamed Laradji, J. Chem. Phys. 126, 044901 (2007)
  35. Pressure driven flow of polymer solutions in the nanoscale slit pores, Jaime. A. Millan, Wenhua Jiang, Mohamed Laradji, Yongmei Wang, J. Chem. Phys. 126, 124905 (2007)
  36. Dependence of the Critical Adsorption Point on Surface and Sequence Disorders for Self-Avoiding Walks Interacting with a Planar Surface. Jesse Ziebarth, Yongmei Wang, Alexey Polotsky, Mengbo Luo. Macromolecules 40, 3498-3504 (2007)
  37. Control of Aggregation of Nanoparticles by Double-Hydrophilic Block Copolymers: A Dissipative Particle Dynamics Study, Jianhua Huang, Yongmei Wang, J. Phys. Chem. B, 111, 7735-7741 (2007)
  38. Molecular dynamic simulations of N-terminal receiver domain of NtrC reveal intrinsic conformational flexibility in the inactive state. Xiaohua Hu, Yongmei Wang, J. Biomolec. Struct. & Dynamic. 23, 485-580 (2006).
  39. Flow Control by Smart Nanofluidic Channels: A Dissipative Particle Dynamics Simulation. Jianhua Huang, Yongmei Wang, M. Laradji, Macromolecules, 39, 5546-5545 (2006)
  40. Retention behaviors of block copolymers in liquid chromatography at the critical condition. W. Jiang, S. Khan, Y. Wang, Macromolecules 38, 7514-7520 (2005).
  41. The adsorption and partitioning of self-avoiding walk chains into pores from a bulk theta solution. J. Ziebarth, S. Orelli, Y. Wang, Polymer 46, 10450-10456 (2005).
  42. Comparison of tRNA motions in the free and ribosomal bound structures. Y. Wang, R. L. Jernigan, Biophysics 89, 3399-3409 (2005).
  43. Partitioning of polymers into pores with surface interactions at dilute solution limit, Y. Wang, D. Howard, Y. Gong. Polymer 45, 313-320 (2004)
  44. Global ribosome motions revealed with elastic network model. Y. Wang, A. J. Rader, I. Bahar, R. L. Jernigan J. Struct. Biol. 147, 302-314 (2004).
  45. Computer simulation studies on overlapping polymer chains confined in narrow channels. I. Teraoka, Y. Wang. Polymer 45, 3835-3843 (2004).
  46. Confinement free energy and chain conformations of homopolymers confined between two repulsive walls. Y. Wang, J. Chem. Phys. 121, 3898-3904 (2004).
  47. Thermodynamics and partitioning of homopolymers into a slit-a grand canonical Monte Carlo simulation study. W. Jiang, Y. Wang, J. Chem. Phys.121, 3905-3913 (2004).
  48. A Computational investigation of the critical condition used in the liquid chromatography of polymers, S. Orelli, W. Jiang, Y. Wang. Macromolecules 37, 10073-10078 (2004).
  49. Comparison of partitioning of a bimodal polymer mixture into micropores in good and theta solvents: A Monte Carlo study. P. Cifra, Y. Wang, I. Teraoka, Macromolecules 35, 1446-1450 (2002).
  50. Partitioning of bimodal polymer mixtures into a slit: effect of slit width, composition and pore-to-bulk volume ratio. Y. Wang, Q. Lin, P. Cifra, I. Teraoka, Colloids and Surfaces A: physiochemical and Engineering Aspect, 206, 305-312 (2002).
  51. Polymer chains in good solvent facing impenetrable walls: what is the distance to the wall in lattice Monte Carlo simulations, I. Teraoka, P. Cifra, Y. Wang, Colloids and Surfaces A: physiochemical and Engineering Aspect, 206, 299-303 (2002).
  52. Partitioning of polymers into pores near the critical adsorption point, Y. Gong, Y. Wang, Macromolecules 35, 7492-7498 (2002).
  53. Simulation of the random scission of C-C bonds in the initial stage of the thermal degradation of polyethylene. P. Doruker; Y. Wang; W. L. Mattice. Comput. Theor. Polym. Sci. 11, 155-166, (2001).
  54. Lattice Monte Carlo simulation for the partitioning of a bimodal polymer mixture into a slit. Y. Wang, I. Teraoka, P. Cifra. Macromolecules 34, 127-133 (2001).
  55. Effective-medium Gaussian-chain theory for semidilute polymer solutions confined to a slit. I. Teraoka, Y. Wang. J. Chem. Phys. 115, 1105-1114 (2001).
  56. What is the distance to wall in the lattice simulations? I. Teraoka; P. Cfira; Y. Wang, Macromolecules 34, 7121-7126 (2001).
  57. Structures and thermodynamics of nondilute polymer solutions confined between two parallel plates. Y. Wang, I. Teraoka. Macromolecules 33, 3478-3484 (2000).
  58. Crossover from two- to three-dimensional contraction of polymer chains in semidilute solutions confined to a narrow slit. I. Teraoka; Y. Wang; Macromolecules 33, 6901-6903 (2000)
  59. Weak-to-strong penetration transition of macromolecules into a slit in theta solvent, P. Cifra, T. Bleha, Y. Wang, I. Teraka, J. Chem. Phys. 113, 8313-8318 (2000).
  60. Exchange kinetics under spherical geometry. Y. Wang; R. G. Diermeier; R. Rajagopalan. Langmuir 13, 2348 (1997).
  61. Monte Carlo simulations for micellar encapsulation. S. Talsania; Y. Wang; R. Rajagopalan; K. Mohanty. J. Colloid Interface Sci. 190, 92-103 (1997).
  62. Simulation of self-assembly in solution by triblock copolymers with sticky blocks at their ends. M. Nguyen-Misra; S. Misra; Y. Wang; K. Rodrigues; W. L. Mattice. Prog. Colloid Polym. Sci..103, 138-145 (1997).
  63. Computer Simulation of Semidilute Polymer Solutions in Confined Geometry: Pore as a Microscopic Probe. Y. Wang; I. Teraoka. Macromolecules 30, 8473-8477 (1997).
  64. Dynamic properties of homopolymer layers adsorbed on a solid surface. Y. Wang; R. Rajagopalan. J. Chem. Phys. 105, 696-705 (1996)
  65. Exchange of chains between micelles of labeled Polystyrene-block-Polyoxyethylene, as monitored by nonradiative singlet energy transfer. Y. Wang; C. M. Kausch; M. Chun; R. P. Quirk; W. L. Mattice. Macromolecules 28, 904-911 (1995).
  66. Kinetics of detachment of homopolymers from a solid surface. Y. Wang; R. Rajagopalan; W. L. Mattice. Phys. Rev. Lett. 74, 2503-2506 (1995).
  67. The exchange kinetics of macromolecules adsorbed on a solid surface: A theoretical investigation. Y. Wang; R. Rajagopalan; W. L. Mattice. Macromolecules 28, 7058-7063 (1995).
  68. Adsorption of homopolymers on a solid surface: A comparison between Monte Carlo simulation and the Scheutjens-Fleer mean-field lattice theory. Y. Wang; W. L. Mattice. Langmuir 10, 2281-2288 (1994).
  69. Influence of chain stiffness on the micellization of block copolymer in a selective solvent as observed in Monte Carlo simulations. P. Adriani; Y. Wang; W. L. Mattice. J. Chem. Phys. 100, 7718-7721 (1994).
  70. Pairwise interactions in the critical micelle concentrations of diblock copolymers. Y. Wang; W. L. Mattice; D. H. Napper. Colloid-Polymer Interactions, edited by P. Dubin and P. Tong. ACS Symposium Series 532, Chapter 5 (1993).
  71. Simulation of the adsorption of symmetric diblock copolymers at the interface of the two monomeric homopolymers. Y. Wang; W. L. Mattice. J. Chem. Phys. 98, 9881-9887 (1993).
  72. A Monte Carlo study of the microphase separation transition in a diblock copolymer melt. R. Balaji; Y. Wang; M. D. Foster; W. L. Mattice. Comput. Polym. Sci. 3, 15-22 (1993).
  73. Simulation of the adsorption of unsymmetric diblock copolymers at the interface between the two monomeric homopolymers. Y. Wang; Y. Li; W. L. Mattice. J. Chem. Phys. 98, 4068-4075 (1993).
  74. Simulation of the formation of micelles by diblock copolymers under weak segregation. Y. Wang; W. L. Mattice; D. H. Napper. Langmuir 9, 66-70 (1993).
  75. Simulation of the self-assembly of symmetric triblock copolymers in dilute solution. Y. Wang; W. L. Mattice; D. H. Napper. Macromolecules 25, 4073-4077 (1992).